Immediate Restart of Domestic ²³⁸Pu Production is Imperative to Support Future NASA Missions NASA STRATEGIC GOAL: ADVANCE SCIENTIFIC KNOWLEDGE OF THE ORIGIN AND HISTORY OF THE SOLAR SYSTEM, THE POTENTIAL FOR LIFE ELSEWHERE, AND THE HAZARDS AND RESOURCES PRESENT AS HUMANS EXPLORE SPACE ## Crucial Systems: ²³⁸Pu Radioisotope Power Systems - Provide electrical power for spacecraft and planetary probes that cannot rely on solar energy due to distance from or shadowing of the sun - Would enable the next phase of more detailed and intensive deep space exploration missions ## ²³⁸Pu Supply Problem - United States domestic production of ²³⁸Pu ceased in 1988 - Limited domestic supply supplemented by purchases from Russia - Russian production also ceased, only limited quantities remain for possible purchase and soon exhausted, fraught with uncertainty - NASA Administrator letter to Secretary of Energy (April 29, 2008) stated NASA's projected mission requirements for ²³⁸Pu - NASA is already limiting future mission planning based on the short supply of ²³⁸Pu - Mars Science Laboratory, Outer Planets Flagship 1, and a small number of missions with limited ²³⁸Pu demand would exhaust the ²³⁸Pu inventory available to NASA Urgency: Even if the FY2010 DOE Budget Includes Funds for Reestablishing ²³⁸Pu Production, NASA's Potential Future Demand for ²³⁸Pu Would Not Be Met Resumption of domestic ²³⁸Pu production would require ~ 8 Years Congress and NASA Requested the National Research Council (NRC) Undertake a Study of RPS Technologies and Systems [Completed May 2009] ===== NRC High Priority Recommendation ====== The Fiscal-Year 2010 Federal Budget Should Fund the Department of Energy to Reestablish Production of ²³⁸Pu